Article Archive
Most Foams Fail E95 Test In Direct Application To Fire

An overturned tanker lies in a ditch next to the highway, the unknown contents spilling freely onto the ground. Smoke rises from the engine compartment. Without action, fire may be eminent. The fire chief makes an instinctive decision based on his many years of experience.

"Pull the foam line," he orders. Beautiful white AFFF cascades from the nozzle across the spill. Yet, for some unknown reason, the foam is dissolving as fast as the firefighters apply it. For some reason, the chosen foam solution is not the correct solution to the problem. Every face is turned toward the chief searching for an explanation. He has none to offer.

Based on the results of a two-week blind testing program conducted in February 2007, foams without an alcohol resistant polymer were unsuccessful in extinguishing fires involving E-95, a blend of 95 percent ethanol and five percent gasoline. E-95 is the typical blend of ethanol shipped to distribution terminals by rail car, truck or barge.

Environmental issues have a huge impact on modern life, the fire service included. Until recently, if a fire department had a spill or a fire involving bulk quantities of motor fuel, the remedy was to apply either alcohol-resistant aqueous film forming foams (AR-AFFF), alcohol resistant fluoroprotein foam (AR-FP), or alcohol-resistant film fluoroprotein (AR-FFFP). Then came ethanol, a biofuel alternative to gasoline.

In 2006, the ethanol industry produced 6 billion gallons, which was blended into 46 percent of our gasoline supply nationwide. Derived from grains such as corn, wheat or switchgrass, ethanol is used to oxygenate gasoline and raise the octane rating. It can be used as fuel in any combination up to pure ethanol.

Praised as a renewable source of energy, ethanol is handled in increasing volumes in the U.S. However, ethanol is a water soluble polar solvent. Traditional non-alcohol resistant foams that are otherwise effective on gasoline and other class B liquid fires are not effective on ethanol. This has left firefighters to debate whether these same foams will work on fires involving ethanol blended with gasoline.

These differing opinions were the driving force behind a recent project to determine through scientific analysis the most effective methodology for responding to a spill or fire involving a bulk container of ethanol or ethanol blended fuel. In order to document the challenges that face first responders in handling ethanol fires and spills, the Ethanol Emergency Response Coalition was formed. The organizations involved are the International Association of Fire Chiefs, Ansul Fire Protection, Industrial Fire World, Renewable Fuels Association, Independent Liquid Terminals Association, Virginia Department of Emergency Response, Williams Fire & Hazard Control and the U.S. Department of Transportation.

Fire departments and industry need to make informed decisions as to which foam concentrates should be used, which ones will work and the associated equipment and tactics to be employed based on the most significant risk. The EERC testing program, conducted in February, used UL 162 test methodology within a scientific test environment, the fire test house at the Ansul Fire Technology Center in Marinette, WI.

Forty-three individual tests were conducted on denatured alcohol, E95 and E10 or gasohol. Three foam application scenarios were used for the UL 162 tests -- type 2, which involves directing a stream of foam solution against a vertical surface simulating a foam chamber, creating a more gentle application across the fuel; type 3, which involves a foam stream directed onto the burning surface of the fuel as with a monitor foam stream and sprinkler application like a truck loading rack.

Every test consumed 55 gallons of fuel with both E-95 and E-10 tested. The fuel had to be a minimum of 50 degrees F before ignition. Once ignited, a 60 second pre-burn period was observed for types 2 and 3 testing, allowing the volume of the fuel to heat up. Sprinkler application only required a 15 second pre-burn.

If the foam was able to extinguish the fire, it was put through a burn back test to evaluate the foam's resistance to fire. Using a round cylinder inserted into the foam blanket spread across a 50 square foot pan, a technician scoops out a portion. Then the cylinder is re-ignited. The cylinder is removed and the fire spread is determined. After five minutes, the foam blanket is inspected. If it has deteriorated by 20 percent since re-ignition, the foam fails the burn back portion of the test. However, if the foam does not lose 20 percent of its coverage, it passes. Using the type 2 application, only one of the six foams was able to extinguish and pass the UL 162 burnback test for denatured ethanol fire and extinguish the test fire --AR-AFFF.

None of the foams extinguished an E-95 fire with a type 3 topside foam application similar to a fire department using a monitor nozzle. Only the AR-AFFF and the conventional AFFF extinguished the 10 percent ethanol fire with a type 3 monitor application at the UL specified application rate. But only the AR-AFFF could pass the burnback portion of the test and this required an increased application rate. Technically, this failed the UL test but still achieved the required results. Two foams were able to pass the UL-162 sprinkler testing on 10 percent ethanol -- AR-AFFF and conventional fluoroprotein foam. The AR-FFFP failed the sprinkler test on a 10 percent ethanol fire, as did the conventional AFFF, Class A foam and the emulsifier.

Regardless of the manufacturer or brand, chemically these tests verified that if the foam does not contain an alcohol-resistant polymer to create a protective coating between the foam and the fuel it will not effectively put out a large ethanol fire.

Many firefighters put forward the theory that it is possible to dilute an ethanol spill with water. The lab work says otherwise. Lab tests show ethanol diluted to 500 percent still burns steadily. Results do not support fighting a polar solvent tank fire by flooding it with water.

What do the EERC fire/foam tests mean to industrial and municipal firefighters? If you have a loading rack that handles ethanol at 10 percent or more you have only one choice as to the foam that will meet fire code for that rack.

The NFPA Fire Code states that foam used in a loading rack must be able to extinguish or control any fires at the rack involving any types of fuels handled at that rack. If firefighters respond to a tanker that may have 10 percent or more of ethanol or all ethanol blends, they only have one type of foam that will work.

If you have a tank on fire with ethanol at 85 percent, the only way to extinguish that fire is with topside fixed systems as per UL tests. Using monitors will not work on fully involved ethanol tank fires. (Work is being done by some of the foam companies, but currently there is no effective solution.) Subsurface injection will not work with 10 percent or more ethanol fuel. (It may not work with any ethanol in the fuel.)

The question many firefighters will ask is whether a dry chemical system on a loading rack is effective on 85 percent ethanol. The answer is yes if the system is designed, correctly installed and maintained. If the dry chemical system would work on gasoline, it will work on ethanol/gasohol. Both gasoline and ethanol are just flammable liquids to dry chemicals.

Many fire departments use crash trucks to respond to gasoline tankers on fire. It used to work real well. A crash truck carrying 3,000 gallons of AFFF and applying it at 500 to 1,000 gpm can knock the heck out of a fire. But with ethanol involved, you might as well leave the crash truck at home. The way we fight flammable liquid fire has to change.

Testing this at home is simple. First, buy a gallon of E-95. After you pour it into a container, mix a quart of the foam solution you have on hand at the percentage you would use it. Then pour it on the ethanol. You will find almost the same results with any foam that is not alcohol resistant.

Visit the IFW web site at for a complete copy of the test results and a link to video of the actual tests.


P: (979) 690-7559
F: (979) 690-7562

Content & Feeds

Download Magazine
Download Media Kit


Feedback Form
Privacy Policy
Ads & Marketing

IFW Sites

IFW Store
IFW Gallery



Thank you for visiting! Join us in our mission by subscribing to IFW magazine, using our Web accessible resources, becoming an advertiser, or sharing your personal input.